Normal Random Variables

5.4
 Normal as Approximation to Binomial

1. Use the normal approximation to calculate the probability that a binomial random variable with $\mathrm{n}=32$ and $\mathrm{p}=0.41$ is greater than or equal to 20 .
2. Use the normal approximation to calculate the probability that a binomial random variable with $\mathrm{n}=51$ and $\mathrm{p}=0.39$ is less than or equal to 25 .
3. Gym membership nationwide in 2010 reached an all-time high of 50.2 million members, according to the International Health, Racquet \& Sportsclub Association, which surveyed nearly 40,000 individuals on their gym habits. This is approximately 23.9% of the American population between the ages of 15 and 64 . If we randomly select 60 people (in the $15-64$ age range) for a survey, use the normal approximation to estimate the probability that more than 15 of them will have a gym membership?

Answers:

1. Using the formulas for the mean and standard deviation of a binomial random variable we get:
$\mu=n p=32 * 0.41=13.12, \sigma=\sqrt{n p q}=\sqrt{32 * 0.41 * 0.59} \approx 2.78223$. Then we use continuity correction by subtracting 0.5 from 20 since we want to include twenty in our probability, and we get:
$P(X \geq 20) \approx P(X \geq 19.5)=P(Z \geq 2.29)=0.0110$
2. Using the formulas for the mean and standard deviation of a binomial random variable we get:
$\mu=n p=51 * 0.39=19.89, \sigma=\sqrt{n p q}=\sqrt{51 * 0.39 * 0.61} \approx 3.48323$. Then we use continuity correction by adding 0.5 to 25 since we want to include twentyfive in our probability, and we get:
$P(X \leq 25) \approx P(X \leq 25.5)=P(Z \leq 1.61)=0.9463$
3. Using the formulas for the mean and standard deviation of a binomial random variable we get:
$\mu=n p=60 * 0.239=14.34, \sigma=\sqrt{n p q}=\sqrt{60 * 0.239 * 0.761} \approx 3.30344$. Then we use continuity correction by adding 0.5 to 15 since we do not want to include fifteen in our probability, and we get:

$$
P(X>15) \approx P(X>15.5)=P(Z>0.35)=0.3632
$$

